第268章 冰雹猜想

MRS會議是美國材料研究協會的常規學術活動之一,同時也是材料學領域影響力最大的頂級會議。

其覆蓋領域幾乎涵蓋了整個材料學領域的全部研究方向,地位大概就相當於材料學界的“國際數學家大會”,幾乎整個材料學界的大牛都會在會議上露個臉。

不過和四年一開的“國際數學家大會”不同,MRS是一年兩次,分春秋兩季。春季一般在亞利桑那州的菲尼克斯,秋季則比較穩定,通常都是在馬薩諸塞州的波士頓。

會議的目的主要是交流技術,向工業界展示成果,爲有錢的企業和缺錢的實驗室牽線搭橋,同時也給同行們提供一個撕逼的場所。

是的,就是撕逼。

如果有人在會上朝着報告人扔鞋子,那一定不要奇怪。反倒是那一屆會議沒有人吵起來,大家心平氣和地開完了會,交換了意見,達成了共識,給同行的技術點贊……那一定會讓業界人士懷疑,是不是太陽打西邊出來了。

越是大牛,撕的越厲害。

這種情況在國際數學家大會上是很難看到的。

從某種意義上來講,數學和其它學科的畫風,還真不太一樣。

身爲一名數學教授,陸舟對撕逼沒有任何興趣。

不過對於他來說,這次會議卻是個機會。

而且MRS突然向他發來邀請函,想必也是有不少人對他的研究成果很感興趣。

當然了,即便如此,陸舟也沒有忘記自己的身份。

他是一名數學教授。

哪怕是爲了看到十級之後的“未來時代”,他也得把眼光放長遠一點,怎麼說也不能把決定其他學科等級上限的數學給落下了。

八月的最後一天,陸舟在高等研究院的辦公室裡,對另外兩名學生進行了測試。

同樣是十道題,限時兩個小時。

將寫着題目的A4紙分別交到兩人手上之後,陸舟便從自己的辦公桌上挑了書,拿在手上翻閱了起來。

時間一分一秒過去。

隨着手機鈴聲的響起,陸舟啪地一聲合上了手中的書本,看向了在紙上奮筆疾書的兩人。

“時間到了,讓我看看你們這個月學的怎麼樣。”

哈迪一臉頭疼地放下了手中的圓珠筆,同樣停筆的秦嶽也是一臉緊張。

“教授,您給的時間太短了,”起身將試題紙交到了陸舟的辦公桌上,哈迪一臉苦澀的表情,“要是再給我十分鐘,我肯定能把下一道題寫出來。”

“時間長短不是關鍵,而且我並沒有要求你們把每道題都做出來,讓我看到你們會了什麼就可以了。”

接過兩人的試題紙,陸舟一邊說着,一邊掃了眼上面的題目。

對於他來說,這些都是很簡答的東西,掃一眼心裡大概就有了個數。

秦嶽做出來了六道題,第七道題沒寫完,但思路沒什麼大問題。

總的來說,他的情況還算不錯,而這也在陸舟的意料之中。

哈迪做出來了五道,勉強達到合格標準,這倒是有些出乎了陸舟的意料。

陸舟本來以爲,至少有一個人是無法通過他的測試的,而這個人最可能便是哈迪。因爲在這三個學生中,屬他的性格最浮躁。

不過現在看來,情況比較樂觀,三個人都拿到了參與這一課題的資格。

將A4紙放在了一邊,陸舟清了清嗓子,開口說道。

“首先恭喜你們加入我的課題。”

聽到這句話,原本因爲只做出了五道題而有些沮喪的哈迪,驚訝睜大了眼睛。旁邊的秦嶽,也露出了詫異的表情。

彷彿看穿了他們在驚訝什麼,陸舟用輕鬆的語氣說明道:“我設置的及格線是五道題,至少能做出來五道,說明你們有把我佈置的任務聽進去,這一個半月的時間至少沒荒廢掉。”

“關於我們課題的具體內容,我就簡單的說下吧。”

喝了口咖啡,陸舟站起身來,走到了辦公室的白板旁邊,拿起馬克筆。

坐在辦公室角落對着電腦默默蒐集文獻的薇拉也停止了手上的工作,和其他兩名學生一樣,搬着自己的椅子坐到了白板前,等待着老闆開講。

“一個半月之前,我曾經和你們透露過,我們的課題和冰雹有關。”

“如果對加性數論有所瞭解,相信你們大概已經猜到了,這個課題到底是什麼。”

哈迪和秦嶽紛紛點了點頭。

正如陸舟所說的,他們已經猜到課題是什麼了。

至於薇拉,倒是沒有什麼多餘的反應。畢竟早在半個月前,她就已經通過考覈,甚至早就已經參與到課題中了。

頓了頓,陸舟繼續講道。

“所謂冰雹猜想,也稱角谷猜想,或者3n+1問題。其描述的命題爲,對於任意取定的正整數N,經fokn(n)=1連續作用有限次後,均無一例外地落入{4,2,1}這一數字陷阱。”

“通俗點講,選擇一個N,如果N是奇數下一步3N+1;如果N是偶數,則下一步變成N/2。經過有限次循環,無論在這期間它的數值如何膨脹,但最終它一定會向冰雹一樣,驟然跌落至1的谷底。”

說到這裡,陸舟停頓片刻,笑了笑繼續說道。

“就像黑洞一樣。”

相比起哥德巴赫猜想,冰雹猜想在美國的知名度毫無疑問更勝一籌。

上個世紀七十年代,幾乎所有美國大學校園中,都能看到有人鑽研這個神奇的“數字遊戲”。而這一現象,甚至登上過北美老牌大報紙《華盛頓郵報》,並在一段時期內形成過一股風潮。

當然,對於普通人來說,這是一個數字遊戲,但對於數學家來說,它卻蘊含着更深層次的東西。

“這是個數論問題,而且是加性數論中的經典問題。但歸根結底,它是個複分析問題!”

“角谷猜想,便是你們未來三年的任務。我不要求你們完全證明這個命題,但你們至少得在這個方向上完成一篇值得被數學年刊收錄的論文……”

陸舟想了想,提筆,在白板上寫下了一行算式。

【h(z^3)=h(z^6)+{h(z^2)+λh(λz^2)+λ^2h(λ^2z^2)}/3z】(其中λ=e^{2πi/3})

看到這行算式,秦嶽立刻從兜裡取出了隨身攜帶的筆記,哈迪也很快打起了精神。

至於薇拉,則是一如既往聽的聚精會神。

“雖然外界對於解決這個問題的觀點普遍悲觀,但事實上,數論界對於這個問題也並非毫無進展。”

“上個世紀九十年代,準確的說是94年,本格(L.Berg)和邁納杜斯(G.Meinardus)教授證明了:3n+1猜想等價於函數方程h(z^3),也就是我在上面板書的那個方程。”

“這條方程的出現,爲後續的證明鋪平了通往山頂的第一塊磚。”

有些東西說是說不出來的。

迴應着那三雙充滿期待的視線,陸舟轉身,在白板上繼續板書。

【g(z)=z/2+(1?cosπz)(z+1/2)/2+1/π(1/2?cosπz)sinπz+h(z)sin2πz滿足:N?Φ(g)。】

【……】

看到這幾行算式,薇拉的眼睛漸漸明亮了起來。

秦嶽和哈迪,分別露出了若有所思和似懂非懂的表情。

停筆之後,陸舟將馬克筆輕輕地放在了旁邊的桌子上,向自己的三名學生微微一笑。

“這一步很關鍵。”

“如果能證明存在一個整函數h(z),對於上述的g(z),Φ(g)的每一個包含某正整數的分支D,均存在z0∈D,使得【gok(z0)】收斂到1……”

停頓了片刻,看着那三雙期待的視線,陸舟笑了笑,用肯定的語氣說道。

“由此,我們就能證明。”

“3n+1成立!”

上一章 返回目录 回到顶部 下一章